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A powerful method for creating nanoscale devices at the LaAlO3/SrTiO3 interface involves 
metastable charging of the top LaAlO3 surface with a conducting AFM probe (Figure 1).  By 
locally and reversibly controlling a metal-insulator transition, the creation of both isolated and 
continuous conducting features has been demonstrated with length scales smaller than 2 nm.  
These structures can be erased and rewritten numerous times.  As a result of the enormous 
flexibility in controlling electronic properties at near-atomic dimensions, a variety of nanoscale 
devices can be realized.	 	
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The rewritable phototransistors presented here bring new functionality to oxide nanoelectronics. 
For example, existing nanowire-based molecular sensors rely on the ability to bring the analyze 
into contact with the sensing area of the detector. Here the roles are reversed: a nanoscale 
phototransistor can be placed in intimate contact with an existing molecule or biological agent. It 
may be possible to take advantage of the significant Stark-shifted photoresponse to improve the 
spatial sensitivity well beyond the diffraction limit. The ability to integrate optical and electrical 
components such as nanowires and transistors may lead to devices that combine in a single 
platform sub-wavelength optical detection with higher-level electronics-based information 
processing. 
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Designer	Potential	Barriers	
 

 
Figure 5 Creation of designer potential barriers. (a) I-V plots for a nanowire cut at the same location multiple times 
with an AFM tip bias Vtip = -2 mV. The green curve indicates the I-V curve before the first cut. Intermediate I-V 
curves are shown after every alternate cut. As the wire is cut, the potential barrier increases (inset) and the zero-bias 
conductance decreases; however, the overall I-V curve remains highly reciprocal. (b) I-V plots for a nanowire 
subject to a sequence of cuts Ncut(x) at nine locations spaced 5 nm apart along the nanowire. The green curve 
indicates I-V curve before the first cut. The asymmetry in Ncut(x) results in a non-reciprocal I-V curve. 

The high degree of control over the energy landscape within the LaAlO3/SrTiO3 2DEG allows 
for the development of a variety of nonlinear devices such as nanoscale junctions.  The shape of 
the barrier can determine whether the transport is reciprocal (I(V) = -I(-V)) or rectifying. 
 
The controlled creation of rectifying structures is further described below. Non-reciprocal 
nanostructures can be created using a slightly different c-AFM manipulation.  In this approach, 
spatial variations in the conduction-band profile are created by a precise sequence of erasure 
steps.  In a first experiment, a conducting nanowire is created using Vtip = +10 V.  The initial I-V 
curve (Figure 5 (a), green curve) is highly linear and reciprocal.  This nanowire is then cut by 
scanning the AFM tip across the nanowire at a speed vy = 100 nm/s using Vtip = -2 mV at a fixed 
location (x = 20 nm) along the length of the nanowire.  This erasure process increases the 
conduction-band minimum Ec(x) locally by an amount that scales monotonically with the 
number of passes Ncut (Figure 5 (a), inset); the resulting nanostructure exhibits a crossover from 
conducting to activated to tunneling behavior.  Here we focus on the symmetry of the full I-V 
curve.  As Ncut increases, the transport becomes increasingly nonlinear; however, the I-V curve 
remains highly reciprocal. The canvas is subsequently erased and a uniform conducting nanowire 
is written in a similar fashion as before (Vtip = +10 V, vx = 400 nm/s).  A similar erasure sequence 
is performed; however, instead of cutting the nanowire at a single x coordinate, a sequence of 
cuts is performed at nine adjacent x coordinates along the nanowire (separated by Dx = 5 nm). 
 The number of cuts at each location along the nanowire Ncut(x) increases monotonically with x, 
resulting in a conduction band profile Ec(x) that is asymmetric by design (Figure 5 (b), inset). 
 The resulting I-V curve for the nanostructure evolves from being highly linear and reciprocal 
before writing (Figure 5 (b), (green curve)) to highly nonlinear and non-reciprocal (Figure 5 (b), 
red curve). 
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Nanoscale control over asymmetric potential profiles at the interface between LaAlO3 and 
SrTiO3 can have many potential applications in nanoelectronics and spintronics.  Working as 
straightforward diodes, these junctions can be used to create half-wave and full-wave rectifiers 
for AC-DC conversion or for RF detection and conversion to DC.  By cascading two or more 
such junctions, with a third gate for tuning the density in the intermediate regime could form the 
basis for low-leakage transistor devices.  The ability of controlling the potential along a nanowire 
could also be used to create wires with built-in polarizations similar to those created in 
heterostructures that lack inversion symmetry. 	
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(5) 	“Copies	of	technical	reports,”	which	have	not	been	previously	
submitted	to	the	ARO,	should	be	submitted	concurrently	with	
the	Interim	Progress	Report.	(See	page	6	“Technical	Reports”	
section	for	instructions.)	However,	do	not	delay	submission	
while	awaiting	Reprints	of	publications.	


